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Abstract
Some (2 + 1)-dimensional nonlinear evolution equations, including the
Kadomtsev–Petviashvili II (KPII) equation and the modified Kadomtsev–
Petviashvili (KP) equation, are decomposed into two (1+1)-dimensional soliton
systems in the coupled KdV hierarchy. With the help of the decomposition and
the Darboux transformation, some explicit solutions of these (2+1)-dimensional
nonlinear evolution equations such as new soliton solutions of the KPII equation
and the modified KP equation are obtained.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

The Kadomtsev–Petviashvili (KP) equation [1] is a ubiquitous nonlinear wave equation
governing weakly nonlinear long waves in two dimensions with slow transverse variations
and has also been proposed as a model for surface waves and internal waves in straits or
channels of varying depth and width [1–4]. The KP equation is also the two-dimensional
generalization of the KdV equation and was widely investigated. Most of the information
about its solutions may be extracted from the Lax pair. Various systematic methods [5–14]
have been developed to obtain exact solutions of the KP equation such as the inverse scattering
transformation, the bilinear transformation of Hirota, the dressing method, the Bäcklund and
Darboux transformations, the algebraic curve method and the nonlinearization approach of
eigenvalue problems [15, 16]. Some important explicit solutions are found, including the
N -soliton solution, the quasi-periodic solution, the rational solution and others.

In this paper, we shall study explicit solutions of (2 + 1)-dimensional nonlinear evolution
equations
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4
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and

rt = 1
4

(
rxxx − 6r2rx + 6rx∂

−1
x ry + 3∂−1

x ryy
)

(3)

rt = rxxx − 6r2rx + 3rry + 3rx∂
−1
x ry (4)

rt = 1
2

( − rxxx + 6r2rx − 6rry + 3∂−1
x ryy

)
(5)

rt = −rry + rx∂
−1
x ry + ∂−1

x ryy (6)

rt = 1
2

(
rxxx − 6r2rx + 2rry + 4rx∂

−1
x ry + ∂−1

x ryy
)

(7)

where ∂−1
x represents an inverse operator of ∂x = ∂/∂x with the condition ∂x∂−1

x = ∂−1
x ∂x = 1,

which can be defined as (∂−1
x f )(x) = ∫ x

−∞ f (x ′) dx ′ under the decaying condition at infinity.
Equations (1) and (3) are the famous Kadomtsev–Petviashvili II (KPII) equation and the mKP
equation [17]. Here we shall give their new soliton solutions. It is very interesting that all the
equations (3)–(7) are representable in a unified way

rt = 1

α + β

[(
α − 1

2β
)
rxxx − 6

(
α − 1

2β
)
r2rx + 3(α − β)rry + 3αrx∂

−1
x ry + 3

2β∂
−1
x ryy

]
(8)

with constants α and β, which is a generalized (2 + 1)-dimensional mKdV equation. In fact,
equation (8) is respectively reduced to (3)–(7) for α = β, β = 0, α = 0, α = 1

2β and α = 2β.
In what follows we outline the methods used here and give the main results. To decompose

the (2+1)-dimensional equations (1)–(7) into (1+1)-dimensional soliton equations, we consider
the first two systems of the coupled KdV hierarchy [18]

uy = uxx + 2uux + 2vx
vy = −vxx + 2(uv)x

(9)

and

ut = uxxx +
(
6uv + 3uux + u3

)
x

vt = vxxx +
( − 3uvx + 3v2 + 3u2v

)
x
.

(10)

It is well known that equations (9) and (10) are compatible since the flows determined by them
commute. We now assume that (u, v) is a compatible solution of (9) and (10), and introduce
two functions q and r by

q(x, y, t) = v(x, y, t) (11)

r(x, y, t) = u(x, y, t). (12)

From (9) and (10) we have

∂−1
x qy = −vx + 2uv

3
4∂

−1
x qyy − 3

4qxxx − 3qqx = −3(uvx)x + 6uvux + 3u2vx

qt − qxxx − 6qqx = −3(uvx)x + 6uvux + 3u2vx

(13)

which implies the KP equation (1). Equation (9) can be written as

u = 1
2q

−1qx + 1
2q

−1∂−1
x qy (14)

v = − 1
2

(
rx + r2 − ∂−1

x ry
)
. (15)

Substituting (14) into the first expression of (10) yields (2). Equations (3)–(7) can be obtained
through elementary calculations. Therefore, we have the following assertion.

Proposition 1. Let (u, v) be a compatible solution of the (1+1)-dimensional soliton systems (9)
and (10). Then the function q(x, y, t) determined by (11) solves the (2 + 1)-dimensional
equations (1) and (2), the function r(x, y, t) by (12) solves any one of the (2 + 1)-dimensional
equations (3)–(7).
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Noticing (11), equation (15) reads

q = − 1
2

(
rx + r2 − ∂−1

x ry
)

(16)

by which a direct calculation shows that

qt − 1
4

(
qxxx + 12qqx + 3∂−1

x qyy
)

= − 1
2

(
∂x + 2r − ∂−1

x ∂y
)[
rt − 1

4

(
rxxx − 6r2rx + 6rx∂

−1
x ry + 3∂−1

x ryy
)]
. (17)

This means that (16) is the Miura transformation between the KPII and mKP equations [17].
Here we obtain the Miura transformation in a simple way. In the following, we shall construct
a Darboux transformation (DT) [8, 19–22] of (9) and (10). With the help of theorem 1, we
give explicit solutions of the (2 + 1)-dimensional equations (1)–(7).

Equation (9) has the Lax representation [23]

φx = U(u, v, λ)φ U(u, v, λ) =
( − 1

2λ + 1
2u −v

1 1
2λ − 1

2u

)
(18)

φy = V (1)(u, v, λ)φ V (1)(u, v, λ) =
( 1

2 (ux + u2 − λ2) vx − uv − λv

λ + u − 1
2 (ux + u2 − λ2)

)
(19)

where u and v are two potentials and λ is a constant spectral parameter. Moreover, the Lax
representation of (10) is the spectral problem (18) and the auxiliary problem

φt = V (2)(u, v, λ)φ V (2)(u, v, λ) =
(
V

(2)
11 V

(2)
12

V
(2)

21 −V
(2)

11

)
(20)

where

V
(2)

11 = 1
2

( − λ3 − 2λv + uxx + 3uux + u3 + 2uv + 2vx
)

V
(2)

12 = −λ2v + λ(vx − uv) − vxx + uxv + 2uvx − u2v − 2v2

V
(2)

21 = λ2 + λu + ux + u2 + 2v.

(21)

In order to construct a DT of (9) and (10), we first derive a gauge transformation for
the spectral problem (18). Here we use the method in [20, 21, 24] to construct the gauge
transformation. To this end, we choose ϕ = (ϕ1, ϕ2)

T, ψ = (ψ1, ψ2)
T to be two basic

solutions of the spectral problem (18) and use (ϕ, ψ) to define a 2 × 2 matrix T by

T =
(
A1(λ + A0) B

C A−1
1 (λ + D0)

)
(22)

with

A0 = λ1α2 − λ2α1

α1 − α2
A2

1 = 1 +
α1α2(λ2 − λ1)

α1 − α2

B = A1(λ2 − λ1)

α1 − α2
C = A−1

1 − A1 (23)

D0 = λ2α2 − λ1α1

α1 − α2
αj = ϕ2(λj ) − γjψ2(λj )

ϕ1(λj ) − γjψ1(λj )

where parameters λj and γj (j = 1, 2; λ1 �= λ2; γ1 �= γ2) are suitably chosen such that all the
denominators in (22) and (23) are not zero. From (22) and (23) we have

det T = (λ − λ1)(λ − λ2). (24)

We now introduce a gauge transformation

φ̂ = T φ (25)
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which transforms the spectral problem (18) and the auxiliary problems (19) and (20) into a
spectral problem of φ̂

φ̂x = Û φ̂ Û = (Tx + T U)T −1 (26)

and its auxiliary problems

φ̂y = V̂ (1)φ̂ V̂ (1) = (
Ty + T V (1)

)
T −1 (27)

φ̂t = V̂ (2)φ̂ V̂ (2) = (
Tt + T V (2)

)
T −1. (28)

In a way similar to the proof in [24], we can verify the following fact.

Proposition 2. The matrices Û , V̂ (1) and V̂ (2) determined by (26)–(28) have the same forms
as U , V (1) and V (2), that is

Û = U(û, v̂, λ) V̂ (1) = V (1)(û, v̂, λ) V̂ (2) = V (2)(û, v̂, λ) (29)

where the transformation formulae from the old potentials u and v into new ones are given by

û = u + ∂x lnA2
1 v̂ = vA2

1 − A1B. (30)

According to proposition 2, it is easy to see that equations (26) and (27) are also a Lax
pair of the (1 + 1)-dimensional soliton equation (9), and equations (26) and (28) are another
Lax pair of the (1 + 1)-dimensional soliton equation (10). The transformation (30) is usually
called a DT of the (1 + 1)-dimensional soliton equations (9) and (10). We obtain immediately
the following assertion.

Proposition 3. Let (u, v) be a solution of the (1+1)-dimensional soliton equations (9) and (10).
Then (i) the function (û, v̂) determined by the DT (30) is a new solution of equations (9)
and (10); (ii) the function

q̂ = vA2
1 − A1B (31)

solves the KPII equation (1) and the (2 + 1)-dimensional equation (2), and the function

r̂ = u + ∂x lnA2
1 (32)

solves the (2 + 1)-dimensional equations (3)–(7).

In the following, we shall apply the DT to give explicit solutions of the (2+1)-dimensional
evolution equations (1) and (7).

(i) Substituting the trivial solutions, u = v = 0, of (9) and (10) into (18)–(20), their two
basic solutions ϕ,ψ are chosen as

ϕ =
(

0
1

)
e

1
2 λx+ 1

2 λ
2y+ 1

2 λ
3t

ψ =
( −λ

1

)
e− 1

2 λx− 1
2 λ

2y− 1
2 λ

3t .

(33)

Noticing equation (23), we have

αj = 1

γjλj
eωj − 1

λj
j = 1, 2 (34)

A2
1 = 1 +

(eω1 − γ1) (eω2 − γ2)

a2eω1 + a1eω2 − γ1γ2

A1B = A2
1γ1γ2λ1λ2

a2eω1 + a1eω2 − γ1γ2

(35)
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Figure 1. (a) q̂ of t = 0 with γ1 = −1000, γ2 = −0.01, λ = 0.001, λ2 = −0.8. (b) q̂ of y = 0
and t = 0.

with

ωj = λjx + λ2
j y + λ3

j t j = 1, 2

a1 = γ1λ1

λ1 − λ2
a2 = γ2λ2

λ2 − λ1
.

Therefore, explicit solutions of the KPII equation (1) and the (2+1)-dimensional evolution
equation (2) are obtained with the help of the DT (31) and (35):

q̂ = −γ1γ2λ1λ2
eω1+ω2 + (a2 − γ2)eω1 + (a1 − γ1)eω2

(a2eω1 + a1eω2 − γ1γ2)
2 . (36)

It is easy to see that the function q̂ has no singularity for (γ1, γ2, λ1, λ2) ∈ A ∪ B, where
A and B are defined by

A = {(γ1, γ2, λ1, λ2) ∈ R
4 | γ1 < 0, γ2 < 0, γ1 �= γ2 and λ1λ2 < 0}

B = {(γ1, γ2, λ1, λ2) ∈ R
4 | γ1 > 0, γ2 < 0, λ1 > λ2 > 0

or γ1 < 0, γ2 > 0, λ2 < λ1 < 0}.
For given parameters γ1, γ2, λ1, λ2, (36) determines an exact solution of the (2 + 1)-
dimensional evolution equations (1) and (2). If different parameters are chosen, the
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Figure 2. (a) q̂ of t = 0 with γ1 = 0.02, γ2 = −0.01, λ1 = 1.5, λ2 = 0.8. (b) q̂ of x = 0 and
t = 0.

solution determined by (36) may be of different properties. For example, when γ1 =
−1000, γ2 = −0.01, λ1 = 0.001, λ2 = −0.8, the function (36) is a one-soliton
solution of the KPII equation (1) and the (2 + 1)-dimensional evolution equation (2)
(see figures 1(a) and (b)), which is not same as those in [5, 6, 8–12, 14, 25] and [26].
When γ1 = 0.02, γ2 = −0.01, λ1 = 1.5, λ2 = 0.8, the function (36) gives a two-soliton
solution of the KPII equation (1) and the (2 + 1)-dimensional evolution equation (2) (see
figures 2(a) and (b)).
By using the DT (32), we arrive at explicit solutions of the mKP equation (3) and the
(2 + 1)-dimensional evolution equations (4)–(7)

r̂ = (λ1 + λ2)eω1+ω2 + λ1(a2 − γ2)eω1 + λ2(a1 − γ1)eω2

eω1+ω2 + (a2 − γ2)eω1 + (a1 − γ1)eω2
− λ1a2eω1 + λ2a1eω2

a2eω1 + a1eω2 − γ1γ2
. (37)

Obviously, the function r̂ has no singularity for (γ1, γ2, λ1, λ2) ∈ A∪B. If the parameters
γ1 = 100, γ2 = −100, λ1 = 1, λ2 = 0.1, the function (37) is a one-soliton solution
of the mKP equation (3), which is not same as those in [27–31], and the (2 + 1)-
dimensional evolution equations (4)–(7) (see figures 3(a) and (b)). For the parameters
γ1 = 100, γ2 = −0.1, λ1 = 10, λ2 = 9, the function (37) describes a phenomenon (see
figures 4(a) and (b)). Here a general method to choose the parameters is to guarantee that
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Figure 3. (a) r̂ of t = 0 with γ1 = 10, γ2 = −0.1, λ1 = 1.3, λ2 = 0.01. (b) r̂ of y = 0 and t = 0.

the denominator in (36) or (37) is not zero, that is, (γ1, γ2, λ1, λ2) ∈ A ∪ B. Then the
properties of solutions are compared for various choices of parameters.

(ii) It is obvious that u = 0 and v = −1 are also solutions of (9) and (10). Substituting
into (18)–(20) yields two basic solutions

ϕ =
( − 1

2

(
λ −

√
λ2 + 4

)
1

)
e

1
2

√
λ2+4[x+λy+(λ2−2)t]

ψ =
( − 1

2

(
λ +

√
λ2 + 4

)
1

)
e− 1

2

√
λ2+4[x+λy+(λ2−2)t].

(38)

Using equation (23), we have

αj = ewj − γj

µjewj + κjγj
j = 1, 2 (39)

A2
1 = 1 +

(ew1 − γ1) (ew2 − γ2)

b1ew1+w2 + b2ew1 + b3ew2 + b4

A1B = A2
1 (µ1ew1 + κ1γ1) (µ2ew2 + κ2γ2)

b1ew1+w2 + b2ew1 + b3ew2 + b4

(40)
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Figure 4. (a) r̂ of t = 4 with γ1 = 100, γ2 = −0.1, λ1 = 10, λ2 = 9. (b) r̂ of x = 0 and t = 4.

with

wj = νj [x + λjy + (λ2
j − 2)t] νj =

√
λ2
j + 4

µj = 1
2 (νj − λj ) κj = 1

2 (νj + λj ) j = 1, 2,

b1 = µ1 − µ2

λ1 − λ2
b2 = −γ2(µ1 + κ2)

λ1 − λ2

b3 = γ1(µ2 + κ1)

λ1 − λ2
b4 = −γ1γ2(κ1 − κ2)

λ1 − λ2
.

(41)

Thus, using the DT (31), equations (40) and (41), we obtain explicit solutions of the KPII
equation (1) and the (2 + 1)-dimensional equation (2)

q̂ = −1 − (µ1ew1 + κ1γ1) (µ2ew2 + κ2γ2) + (ew1 − γ1) (ew2 − γ2)

b1ew1+w2 + b2ew1 + b3ew2 + b4

− (µ1ew1 + κ1γ1) (µ2ew2 + κ2γ2) (ew1 − γ1) (ew2 − γ2)

(b1ew1+w2 + b2ew1 + b3ew2 + b4)
2 . (42)

Resorting to the DT (32) and (40), we have

r̂ = (ν1 + ν2)(1 + b1)ew1+w2 + ν1(b2 − γ2)ew1 + ν2(b3 − γ1)ew2

(1 + b1)ew1+w2 + (b2 − γ2)ew1 + (b3 − γ1)ew2 + b4 + γ1γ2

−b1(ν1 + ν2)ew1+w2 + ν1b2ew1 + ν2b3ew2

b1ew1+w2 + b2ew1 + b3ew2 + b4
(43)
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which are also explicit solutions of the mKP equation (3) and the (2 + 1)-dimensional
evolution equations (4)–(7).
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